

MMORPG Database

Team Kelvin
Tyler Larican, Sean Miles, Elijah Edwards, Kylun Robbins

March 16th, 2020

Team Kelvin

Table of Contents

Version History 3

Proposal 4
Overview 4
Approximate Schedule 5
Work Distribution 5

Design Document 6
Entities 6
Assumptions 6
Design Decisions 6
Entity-Relationship Diagram 7

Description 7
Relational Data Model 8

Description 8
Domain and Entity Integrity Constraints 9

Normalization 11

Tooling Assessment 14
DBMS 14
UI 14
Hosting 14
Additional Tools 14

Version Control 14
Back-end Language 14
IDE 14
Data Generation 14

Database Creation 15
Table Creation Queries 15
Constraint Testing 20
Data Generation 21

UI 22

Demo 24

1

Team Kelvin

Connecting to the Database 25

Project Evaluation 26
Successes 26
Issues 26
Future Changes 26

References 27

2

Team Kelvin

Version History

V1.0: Iteration 0

● Created the proposal overview with an approximate schedule.
V1.1: Iteration 1

● Added design document section containing the database’s:
○ Entity-Relationship Diagram
○ Relational Data Model

● Added all relations, attributes, primary keys, foreign keys, and constraints.
● Added assumptions and explanations for design decisions.

V1.2: Iteration 2
● Added tooling assessment section containing the planned tools to use for development

including the DBMS, UI, hosting service, version control, backend language, IDE, and
tool for sample data generation.

V1.3: Iteration 3
● Added test data through manual insertion using SQL queries with MySQL.
● Added incorrect or invalid SQL queries to test database constraints.
● Added section explaining how the test data was acquired and a plan for generating

sample data.
V1.4: Iteration 4

● Added an icon for the project on the front page.
● Updated SQL queries formatted as a table with an included purpose.
● Added explanation on how correctness of test data is ensured.
● Added explanation on how our sample data was randomly generated.
● Added normalization section in design document, explaining the form each table is in.
● Added UI section including screenshots and explanations of queries related to the

functionality of the UI.
● Added project evaluation section including discussion on what went right, what went

wrong, and potential changes we could make in the future.
● Added references section.

3

Team Kelvin

Proposal
Overview

Team Kelvin proposes a relational database for a simple Massively multiplayer online

role-playing game (MMORPG). This database will be used by both developers and players of the

game. It will hold data such as players, items, enemies, times, and locations. Players will be able

to use queries such as:

● List the item that drops from enemy whose Mob_ID is “1234”

● List all mobs found in the location whose Location_ID is “BattleZone1”

● List all friends for the player whose Player_id is “1234”

These queries can be used by players to assist them in their gameplay. By offering an easy,

built-in function for finding information on the game, players won’t have to go to other sources

to find the information they need. Developers will be able to use queries such as:

● List the amount of times the mob whose Mob_ID is “1234” has killed players

● List the amount of players that are using the weapon whose Weapon_ID is

“BasicSword1”

● List the most worn armor for players of class “Wizard”

These queries can be used by developers to assist in gaining information on how players are

playing the game. This information such as timers and player inventory status can help with

making decisions on changes and balances to the game.

4

Team Kelvin

Approximate Schedule
Table 1 shows the tentative schedule Team Kelvin will be following. The schedule is
approximate and subject to change as the project goes on. These milestones are simply
guidelines for members to reach for.

Table 1: Team Kelvin Milestone Schedule

Deliverable Completion date Plan post completion

Proposal 19-Jan-20 Prepare tooling document and presentation

Tooling 26-Jan-20 Prepare ER diagram and relation model

Design Documentation 02-Feb-20 Populate database and create sample queries

Populated Database 09-Feb-20 Create and test SQL statements

SQL Query Statements 16-Feb-20 Begin Normalization process

Normalization 23-Feb-20 Evaluate possible options for UI

User Interface Strategy 01-Mar-20 Prepare final deliverable and presentation

Documentation and Poster
Presentation

16-Mar-20 Internal team retrospective

Work Distribution
All parts of the project will be worked on evenly by all members of Team Kelvin.

5

Team Kelvin

Design Document
Entities
The following are entity types chosen for the database:

● ACCOUNT: first name, last name, email, time played, # of characters
● CHARACTER: class, level, experience, name, playtime, health, strength, magika, money
● MOBS: mob ID, name, health, money to drop, exp to drop
● CONSUMABLES: item ID, description, heal total, strength buff, magic buff, item

duration, item cost
● LOCATION: location ID, name, recommended location levell, # of players
● WEAPON: weapon ID, cost, name, type, strength given, magic given
● ARMOR: armor ID, cost, name, health given, strength given, magic given
● NPC: NPC ID, name, type
● QUEST: quest ID, name, money given, recommended quest level, exp given, list of mobs

to kill, list of items to collect, type

Assumptions
1. An Account can have 0-7 Characters associated with it.
2. A Character can wear 0-5 pieces of Armor.
3. A Character can wield 0-2 weapons.
4. Combat occurs between 1 Character and 1 Mob at a time only (an attack hitting multiple

Mobs occurs between each Mob separately).
5. Multiple Characters can interact with 1 NPC at once.

Design Decisions
As of now, the character has no inventory system, this suggests:

a. Consumables must be used as they are picked up
b. Characters can only swap armor
c. Characters can only swap weapons

6

Team Kelvin

Entity-Relationship Diagram

Figure 1: Game Database Entity-Relationship Diagram

Description

Figure 1 shows the Entity-Relationship Diagram for our MMORPG database. This diagram
provides an outline of our data entities, the entities’s attributes, and the relationships between
different data entities.

7

Team Kelvin

Relational Data Model
Figure 2: Game Database Relational Data Model

Description

Figure 2 shows the Relational Data Model for our MMORPG database. This model shows in
more detail how the entities will interact with each other. This figure will include entities and
relationships and their attributes, including primary keys and foreign keys.

8

Team Kelvin

Domain and Entity Integrity Constraints

The following section lists the domain and entity integrity constraints of each table’s attributes.
Bolded attributes represent a nullable attribute.

● Account(Email:demail, First_Name:Dstring, Last_Name:Dstring, Time_Played:Dtime,
Num_Character:Dinteger)

● Character(Email:demail, Character_Name:Dstring, Class:dclass, Experience:Dinteger,
Health:Dinteger, Strength:Dinteger, Magika:Dinteger, Money:Dinteger, Playtime:Dtime,
Location_ID:Dstring)

● Mobs(Mob_ID:Dstring, Mob_Name:Dstring, Mob_Health:Dinteger, Money_Drop:Dinteger,
Exp_Drop:Dinteger, Drop_ID:Dstring)

● Consumable(Item_ID:Dstring, Item_Desc:Dstring, Heal_Total:Dinteger, Str_Buff:Dinteger,
Magic_Buff:Dinteger, Item_Duration:Dtime, Item_Cost:Dinteger)

● Location(Location_ID:Dstring, Rec_Loc_Lvl:Dinteger, Location_Name:Dstring)

● Quest(Quest_ID:Dstring, Quest_Name:Dstring, Money_Given:Dinteger, Rec_Quest_Lvl:Dinteger,
Exp_Given:Dinteger, Mobs_to_Kill:Dstring, Items_to_Collect:Dstring, Quest_Type:dquest)

● NPC(NPC_ID:Dstring NPC_Name:Dstring, NPC_Type:dNPC)

● Armor(Armor_ID:Dstring, A_Health_Given:Dinteger, A_Magic_Given:Dinteger,
A_Strength_Given:Dinteger, Armor_Cost:Dinteger, Armor_Name:Dstring)

● Weapon(Weapon_ID:Dstring, W_Strength_Given:Dinteger, W_Magic_Given:Dinteger,
Weapon_Type:dweapon, Weapon_Name:Dstring, Weapon_Cost:Dinteger)

● Char_Weapons(Email:demail, Character_Name:Dstring, Weapon_ID:Dstring)

● Char_Armor(Email:demail, Character_Name:Dstring, Armor_ID:Dstring)

● Quest_Counter(Email:demail, Character_Name:Dstring, Quest_ID:Dstring, Completed:Dbool)

● Kill_Counter(Email:demail, Character_Name:Dstring, Mob_ID:Dstring,
C_Kill_M_Counter:Dinteger, M_Kill_C_Counter:Dinteger)

9

Team Kelvin

The domains are described as follows:

● Dstring: String
● Dinteger: Non-Negative Integer
● Dtime: H:M:S time
● Dbool: True/False
● demail ∈ Dstring: [name] @ [domain] format
● dclass ∈ Dstring: Available classes in game
● dquest ∈ Dstring: Available quest types
● dNPC ∈ Dstring: Available NPC types

10

Team Kelvin

Normalization
● Account:

○ Email -> First_Name
○ Email -> Last_Name
○ Email -> Time_Played
○ Email -> Num_Character

This table is in BCNF because all attributes are fully dependent on the primary key.
● Location:

○ Location_ID -> Rec_Loc_Lvl
○ Location_ID-> Location_Name

This table is in BCNF because all attributes are fully dependent on the primary key.
● Player_Character:

○ Email -> ACC_Email
○ ACC_Email, Character_Name -> Class
○ ACC_Email, Character_Name -> Experience
○ ACC_Email, Character_Name -> Health
○ ACC_Email, Character_Name -> Strength
○ ACC_Email, Character_Name -> Magika
○ ACC_Email, Character_Name -> Money
○ ACC_Email, Character_Name -> Playtime
○ Location_ID -> LOC_Location_ID

This table is in BCNF because all attributes are fully dependent on the primary keys.
● Consumable:

○ Item_ID -> Item_Desc
○ Item_ID -> Heal_Total
○ Item_ID -> Str_Buff
○ Item_ID -> Magic_Buff
○ Item_ID -> Item_Duration
○ Item_ID -> Item_Cost

This table is in BCNF because all attributes are fully dependent on the primary key.
● Mob:

○ Mob_ID -> Mob_Name
○ Mob_ID -> Mob_Health
○ Mob_ID -> Money_Drop
○ Mob_ID -> Exp_Drop
○ Item_ID -> Drop_ID

This table is in BCNF because all attributes are fully dependent on the primary key.

11

Team Kelvin

● Quest:

○ Quest_ID -> Quest_Name
○ Quest_ID -> Money_Given
○ Quest_ID -> Rec_Quest_Lvl
○ Quest_ID -> Exp_Given
○ Mob_ID -> Mobs_to_Kill
○ Item_ID -> Items_to_Collect
○ Quest_ID -> Quest_Type

This table is not in 1NF because a Quest can have more than one value within
Mobs_to_Kill and Items_to_Collect. To fix this, two new tables should be created containing a
Quest’s Target Mobs and a Quest’s Target Items. This would improve the design because one
Quest ID could then be related to both a Quest Mobs and a Quest Items table.

● NPC:
○ NPC_ID -> NPC_Name
○ NPC_ID -> NPC_Type

This table is in BCNF because all attributes are fully dependent on the primary key.
● Armor:

○ Armor_ID -> A_Health_Given
○ Armor_ID -> A_Magic_Given
○ Armor_ID -> A_Strength_Given
○ Armor_ID -> Armor_Cost
○ Armor_ID -> Armor_Name

This table is in BCNF because all attributes are fully dependent on the primary key.
● Weapon:

○ Weapon_ID -> W_Strength_Given
○ Weapon_ID -> W_Magic_Given
○ Weapon_ID -> Weapon_Type
○ Weapon_ID -> Weapon_Name
○ Weapon_ID -> Weapon_Cost

This table is in BCNF because all attributes are fully dependent on the primary key.
● Char_Weapon:

○ Email -> ACC_Email
○ Character_Name -> CHAR_Name
○ Weapon_ID -> WEAPON_ID

This table is in BCNF because all attributes are fully dependent on the primary keys.
● Char_Armor:

○ Email -> ACC_Email
○ Character_Name -> CHAR_Name

12

Team Kelvin

○ Armor_ID -> ARMOR_ID

This table is in BCNF because all attributes are fully dependent on the primary keys.
● Quest_Counter:

○ Email -> ACC_Email
○ Character_Name -> CHAR_Name
○ Quest_ID -> QUEST_ID

This table is in BCNF because all attributes are fully dependent on the primary keys.
● Kill_Counter:

○ Email -> ACC_Email
○ Character_Name -> CHAR_Name
○ Mob_ID -> MOB_ID
○ ACC_Email, CHAR_Name, MOB_ID -> C_Kill_M_Counter
○ ACC_Email, CHAR_Name, MOB_ID -> M_Kill_C_Counter

This table is in BCNF because all attributes are fully dependent on the primary keys.

13

Team Kelvin

Tooling Assessment
DBMS
MySQL will be our Database Management System because it is open source, free, and widely
used. It also connects well with our other tools.

UI
We used Python to create our command-line UI.

Hosting
Amazon Web Services (AWS) will host our database because it is widely used in industry and
free for students.

Additional Tools

Version Control

Git / GitHub will be used to collaborate and control versions.

Back-end Language

Python will hold our back-end because it connects well with MySQL and it is easy to learn and
use.

IDE

PyCharm will be our Python IDE because it integrates well with GitHub, MySQL, and the
premium version is free for students.

Data Generation

Mockaroo because we will need randomly generated data and it is free for the first 1,000 rows of
data.

14

Team Kelvin

Database Creation
Table Creation Queries
SQL Statement Purpose

create table ACCOUNT

(

 Email varchar(50) not null,

 First_Name varchar(15) not null,

 Last_Name varchar(15) null,

 Time_Played time default '000:00:00' not null,

 Num_Character tinyint unsigned default 0 not null,

 constraint ACCOUNT_pk

 primary key (Email)

);

Create Account
Table

create table LOCATION

(

 Location_ID varchar(30) not null,

 Rec_Loc_Lvl tinyint unsigned default 1 not null,

 Location_Name varchar(30) not null,

 constraint LOCATION_pk

 primary key (Location_ID)

);

Create Location
Table

create table PLAYER_CHARACTER

(

 ACC_Email varchar(50) not null,

 Character_Name varchar(30) not null,

 Class varchar(7) not null

 check (Class in ('Warrior', 'Mage', 'Thief')),

 Experience int unsigned default 0 not null,

 Health int unsigned not null,

 Strength int unsigned not null,

 Magika int unsigned not null,

 Money int unsigned default 100 not null,

 Playtime time default '000:00:00' not null,

 LOC_Location_ID varchar(30) default 'StartingZone' not

null,

 constraint CHARACTER_pk

 primary key (ACC_Email, Character_Name),

 index name (Character_Name),

 constraint CHAR_ACC_Email_fk

 foreign key (ACC_Email) references ACCOUNT (Email)

 on update cascade on delete cascade,

 constraint CHAR_LOC_LocID_fk

 foreign key (LOC_Location_ID) references LOCATION

(Location_ID)

 on update cascade on delete cascade

Create Player
Character Table

15

Team Kelvin

);

create table CONSUMABLE

(

 Item_ID varchar(20) not null,

 Item_Desc text not null,

 Heal_Total int signed null,

 Str_Buff int signed null,

 Magic_Buff int signed null,

 Item_Duration time null,

 Item_Cost mediumint unsigned null,

 constraint CONSUMABLE_pk

 primary key (Item_ID)

);

Create
Consumable
Table

create table MOB

(

 Mob_ID varchar(20) not null,

 Mob_Name varchar(30) not null,

 Mob_Health smallint unsigned not null,

 Money_Drop mediumint unsigned not null,

 Exp_Drop int unsigned not null,

 Drop_ID varchar(20) not null,

 constraint MOB_pk

 primary key (Mob_ID),

 constraint MOB_CONSUME_Drop_fk

 foreign key (Drop_ID) references CONSUMABLE (Item_ID)

 on update cascade on delete cascade

);

Create Mob Table

create table QUEST

(

 Quest_ID varchar(30) not null,

 Quest_Name tinytext not null,

 Money_Given mediumint unsigned not null,

 Rec_Quest_Lvl tinyint unsigned not null,

 Exp_Given int unsigned not null,

 Mobs_to_Kill varchar(20) not null,

 Items_to_Collect varchar(20) not null,

 Quest_Type varchar(7) not null

 check (Quest_Type in ('Slay', 'Collect')),

 constraint QUEST_pk

 primary key (Quest_ID),

 constraint QUEST_CONSUME_Collect_fk

 foreign key (Items_to_Collect) references CONSUMABLE

(Item_ID)

 on update cascade on delete cascade,

 constraint QUEST_MOB_Kill_fk

 foreign key (Mobs_to_Kill) references MOB (Mob_ID)

 on update cascade on delete cascade

);

Create Quest
Table

16

Team Kelvin

create table NPC

(

 NPC_ID varchar(20) not null,

 NPC_Name varchar(20) not null,

 NPC_Type varchar(10) not null,

 constraint NPC_pk

 primary key (NPC_ID)

);

Create NPC
Table

create table ARMOR

(

 Armor_ID varchar(30) not null,

 A_Health_Given int signed not null,

 A_Magic_Given int signed null,

 A_Strength_Given int signed null,

 Armor_Cost mediumint unsigned not null,

 Armor_Name tinytext not null,

 constraint ARMOR_pk

 primary key (Armor_ID)

);

Create Armor
Table

create table WEAPON

(

 Weapon_ID varchar(30) not null,

 W_Strength_Given int signed null,

 W_Magic_Given int signed null,

 Weapon_Type varchar(9) not null

 check (Weapon_Type in ('Staff', 'Wand', 'Dagger',

'Sword', 'Longsword')),

 Weapon_Name tinytext not null,

 Weapon_Cost mediumint unsigned not null,

 constraint WEAPON_pk

 primary key (Weapon_ID)

);

Create Weapon
Table

create table CHAR_WEAPON

(

ACC_Email varchar(50) not null,

CHAR_Name varchar(30) not null,

WEAPON_ID varchar(30) not null,

constraint CHAR_WEAPON_pk

 primary key (ACC_Email, CHAR_Name, WEAPON_ID),

constraint CHAR_WEAPON_ACC_Email_fk

 foreign key (ACC_Email) references ACCOUNT (Email)

 on update cascade on delete cascade,

constraint CHAR_WEAPON_CHAR_Name_fk

 foreign key (CHAR_Name) references PLAYER_CHARACTER

(Character_Name)

 on update cascade on delete cascade,

constraint CHAR_WEAPON_WEAPON_ID_fk

 foreign key (WEAPON_ID) references WEAPON (Weapon_ID)

Create Character
Weapon Table

17

Team Kelvin

 on update cascade on delete cascade

);

create table CHAR_ARMOR

(

 ACC_Email varchar(50) not null,

 CHAR_Name varchar(30) not null,

 ARMOR_ID varchar(30) not null,

 constraint CHAR_ARMOR_pk

 primary key (ACC_Email, CHAR_Name, ARMOR_ID),

 constraint CHAR_ARMOR_ACC_Email_fk

 foreign key (ACC_Email) references ACCOUNT (Email)

 on update cascade on delete cascade,

 constraint CHAR_ARMOR_ARMOR_ID_fk

 foreign key (ARMOR_ID) references ARMOR (Armor_ID)

 on update cascade on delete cascade,

 constraint CHAR_ARMOR_CHAR_Name_fk

 foreign key (CHAR_Name) references PLAYER_CHARACTER

(Character_Name)

 on update cascade on delete cascade

);

Create Character
Armor Table

create table QUEST_COUNTER

(

ACC_Email varchar(50) not null,

CHAR_Name varchar(30) not null,

QUEST_ID varchar(30) not null,

Completed boolean not null default false,

constraint QUEST_COUNTER_pk

 primary key (ACC_Email, CHAR_Name, QUEST_ID),

constraint QUEST_COUNTER_ACC_Email_fk

 foreign key (ACC_Email) references ACCOUNT (Email)

 on update cascade on delete cascade,

constraint QUEST_COUNTER_CHAR_Name_fk

 foreign key (CHAR_Name) references PLAYER_CHARACTER

(Character_Name)

 on update cascade on delete cascade,

constraint QUEST_COUNTER_QUEST_ID_fk

 foreign key (QUEST_ID) references QUEST(Quest_ID)

 on update cascade on delete cascade

);

Create Quest
Counter Table

create table KILL_COUNTER

(

ACC_Email varchar(50) not null,

CHAR_Name varchar(30) not null,

MOB_ID varchar(20) not null,

C_Kill_M_Counter mediumint unsigned default 0 not null,

M_Kill_C_Counter mediumint unsigned default 0 not null,

constraint KILL_COUNTER_pk

 primary key (ACC_Email, CHAR_Name, MOB_ID),

Create Kill
Counter Table

18

Team Kelvin

constraint KILL_COUNTER_ACC_Email_fk

 foreign key (ACC_Email) references ACCOUNT (Email)

 on update cascade on delete cascade,

constraint KILL_COUNTER_CHAR_Name_fk

 foreign key (CHAR_Name) references PLAYER_CHARACTER

(Character_Name)

 on update cascade on delete cascade,

constraint KILL_COUNTER_MOB_ID

 foreign key (MOB_ID) references MOB (Mob_ID)

 on update cascade on delete cascade

);

19

Team Kelvin

Constraint Testing
The following SQL statements were specially written to test the four types of constraints
(domain, referential integrity, entity integrity, key/uniqueness). Correctness is ensured in that all
of the following SQL statements will fail if executed, as a constraint is failed on each statement.

SQL Statement Purpose

insert into NPC values ('01', 'Mark

Jackson', 'Quest');

insert into NPC values ('01', 'Mike Brown',

'Quest');

Test that a two NPCs cannot have the
same ID
Key/Uniqueness Constraint

insert into QUEST values ('7', 'Broken

Quest 2', 500, 12, 10000, '09', 'FullHeal',

'Escort');

Test that the quest type is of ('Slay',
'Collect')
Domain Constraint

insert into CHAR_WEAPON values

('edwareli@uw.edu', 'EliTheMage', '02');

Test that an email must be valid in
CHAR_WEAPON
Referential Integrity Constraint

insert into ACCOUNT values

('BadEmail@domain.C', 'John', 'Doe',

default, 0);

Test that an ACCOUNT’s email is
valid Domain Constraint

insert into PLAYER_CHARACTER values

('GoodEmail@domain.com', 'GoodGuyJohn',

'Bard', 40000, 1000, 500, 10, 50000,

'020:00:00', 'Skyrim');

Test that a PLAYER_CHARACTER’s
class is of ('Warrior', 'Mage', 'Thief')
Domain Constraint

insert into WEAPON values ('15', 50, 0,

'Axe', 'Iron Axe', 1000);

Test that a WEAPON’s type is of
('Staff', 'Wand', 'Dagger', 'Sword',
'Longsword')
Domain Constraint

insert into Location values (null, 999,
'BadLocation');

Test that a Location must have an
Location_ID (cannot be null)
Entity Integrity Constraint

insert into QUEST values ('7', 'Broken

Quest', 1000, 26, 10000, NULL, 'FullHeal',

'Collect');

Test that both mob to kill and a item to
collect are necessary in a quest
Domain Constraint

20

Team Kelvin

Data Generation
The data was generated by manually writing all of the test data directly into MySQL with SQL
statements. We took inspiration from the Elder Scrolls video game series for some of the
manually created data (The Elder Scrolls Online).

Sample data for Account, Character, Char_Armor, Char_Weapon, Quest_Counter and
Kill_Counter was randomly generated by Mockaroo.

21

Team Kelvin

UI
Our UI was implemented using Python and is a simple command-line interface. The user
scenario we chose was the video game’s developers. They would use this UI to analyze and
view data from the game to assist in development decisions. The UI allows for the user to enter
a SQL statement from the command line and the SQL statement is executed in the database. Our
UI for the class demo was prepared with some use cases already prepared in functions to make
the demo go smoothly. This would be replicated in our use case scenario because developers
would need to run certain queries often to watch trends/change in data.

If we had more time, we would like to expand the UI to be able to be viewed by players of the
game. This would provide information such as: the most popular weapons, the top players, the
most popular quests or locations, et cetera. In addition, we would like to develop built in
functions to detect bad/cheating accounts.

Figure 3: UI (Dashboard)
Figure 3 shows the UI that is available to developers when the file is run. This UI is the one used
for the class demo with the option for a custom SQL query or a choice of 5 ready SQL queries.

Figure 4: Code Snippet
Figure 4 shows two code snippets. The first is the input loop that takes input from the user and
calls a function through a switch. The second section shows the function customSQL() that is
called when the user inputs “1” for custom SQL input.

Getting user input

while True:
 # UI Dashboard
 print("\nDashboard:")

22

Team Kelvin

 print("1: Enter custom SQL Statement")
 print("2: Show all players currently at LOCATION: Skyrim")
 print("3: Show all characters for EMAIL: adiviney35@time.com")
 print("4: Show how many player are of each CLASS: (Thief, Mage,
Warrior)")
 print("5: Show all fights that CHARACTER: rertelt23 has been in")
 print("6: Show quest record for CHARACTER: cmiche13")
 print("0: Exit")

 value = int(input('---> '))
 switcher[value]()

Allows for custom SQL statement through command line input

def customSQL():
 retVal = input('Enter SQL ---> ')
 test = pd.read_sql(retVal, con=mydb)
 print(test)

Figure 5: Output
Figure 5 shows the output of a custom SQL query that was inputted form the UI.

23

Team Kelvin

Demo
The demo showcases these 8 queries to show how a game developer may use our database to
help retrieve useful information about the events taking place in game. The data would then be
used to help make decisions on future development.
We felt more complicated (i.e. join, nested) queries would complicate the demo and be too
specific for our data. We were confident that our queries provided the most common and
practical use case scenarios. However, we do see the value and functionality of game developers
creating certain complicated queries to check specific data.

SQL Statement Purpose

SELECT ACC_Email, Character_Name
FROM PLAYER_CHARACTER,
 LOCATION
WHERE LOC_Location_ID='Skyrim'

This statement selects all players currently at the
location “Skyrim”. This could easily be changed
to access a different location. This statement is
useful to see the most popular and least popular
locations.

SELECT *
FROM PLAYER_CHARACTER
WHERE
ACC_Email='adiviney35@time.com’

This statement shows all the characters for a
given account. This is useful for bug/error tickets
by accounts to see all the different characters
connected to their account.

SELECT COUNT(Character_Name)
FROM PLAYER_CHARACTER
WHERE Class='Thief'
SELECT COUNT(Character_Name)
FROM PLAYER_CHARACTER
WHERE Class='Mage’
SELECT COUNT(Character_Name)
FROM PLAYER_CHARACTER
WHERE Class='Warrior'

These three statements display the number of
characters who are playing as class ‘Thief’,
‘Mage’, and ‘Warrior’. This was done in our
demo and provides insight on what classes are
being used the most which could alter balancing
decisions for developers. For example, in our
database ‘Thief’ has the most users by a sizable
amount which could signal a “nerf” to the ‘Thief’
class or new content for the class.

SELECT *
FROM KILL_COUNTER
WHERE CHAR_Name='rertelt23'

This statement displays all “fights” that involve
the character named ‘rertelt23’. This is useful to
see how a certain character is performing against
certain mobs or how low level characters are
performing against certain mobs.

SELECT QUEST_ID, Completed
FROM QUEST_COUNTER
WHERE CHAR_Name='cmiche13'

This statement selects all quests that are currently
assigned to character ‘cmiche13’. This is useful
for displaying an in-game journal for characters of

24

Team Kelvin

current and completed quests. In addition, it is
useful for debugging glitches where certain quests
are not completing correctly.

Connecting to the Database
Our database is hosted with AWS using MySQL.

To access our database follow these steps:

1. Download MySQL Workbench
2. In MySQL Workbench go to the “Database” tab
3. Select “Manage Connections”
4. Select “New”
5. Login with:

a. Host-name: videogamedb.coollmbh4cdk.us-west-2.rds.amazonaws.com
b. Port: 3306
c. Username: admin
d. Password: (emailed to professor and graders on 03/06/20)

25

http://videogamedb.coollmbh4cdk.us-west-2.rds.amazonaws.com/

Team Kelvin

Project Evaluation
Successes
Overall, the project went over smoothly. All project members communicated often online and
met up in-person before each iteration to plan and design for the upcoming work. Frequent
communication among our team allowed us to swiftly decide how we wanted to divide the work
evenly among team members. Each team member specialized in a certain area, receiving help or
feedback from other team members when needed, allowing for efficient completion of work. In
the early stages of planning, we wanted to ensure that the scope of our project was realistic for
the time we were given, which ended up working well as we did not plan for anything too small,
or anything too large.

Issues
When generating the random data in Mockaroo, our team ran into some issues involving missing
data and inconsistencies due to Mockaroo’s limitations. Some Accounts were not linked to the
correct number of Characters, and Account playtime’s were not adding up with Character
playtime’s. These problems occurred because the numbers were derived from Account’s number
of characters and playtime, while if it was derived from Character, the problem would be solved.
Additionally, not every character had a Kill or Quest Counter. This problem occurred because
Kill Counter is a cartesian product of Character x Mob, which results in more rows than
Mockaroo allows in a single generation. Mockaroo also does not have a time value, so we
struggled a bit in formatting that. Apart from Mockaroo, our team did not encounter other
obstacles during the development of this project.

Future Changes
Upon evaluation of our project, some future changes we could potentially make to improve our
project would be:

● Adding a Character Inventory so a character can carry un-equipped Armor and Weapons,
rather than equipping on pickup, and Consumables for later use, rather than immediate
use on pickup.

● Normalization of the Quest table, allowing each Quest ID to be related to a Quest Mobs
table and a Quest Items table.

● Improvement of and hosting for the UI.
● More test data and more types of data (different NPCs, different weapons, etc.)
● Adding a Shop table operated by an NPC that the Player can purchase weapons, armor, or

consumables from using money.

26

Team Kelvin

References
The Elder Scrolls Online [Video game]. (2014). Rockville, MD: Bethesda Softworks.

27

